NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS # **TECHNICAL NOTE 2389** FATIGUE STRENGTHS OF AIRCRAFT MATERIALS AXIAL-LOAD FATIGUE TESTS ON NOTCHED SHEET SPECIMENS OF 24S-T3 AND 75S-T6 ALUMINUM ALLOYS AND OF SAE 4130 STEEL WITH STRESS-CONCENTRATION FACTORS OF 2.0 AND 4.0 By H. J. Grover, S. M. Bishop, and L. R. Jackson Battelle Memorial Institute Washington June 1951 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC # TECHNICAL NOTE 2389 FATIGUE STRENGTHS OF AIRCRAFT MATERIALS AXIAL-LOAD FATIGUE TESTS ON NOTCHED SHEET SPECIMENS OF 24S-T3 AND 75S-T6 ALUMINUM ALLOYS AND OF SAE 4130 STEEL WITH STRESS-CONCENTRATION By H. J. Grover, S. M. Bishop, and L. R. Jackson FACTORS OF 2.0 AND 4.0 #### SUMMARY This report presents results of axial-load fatigue tests on notched specimens of three sheet materials: 24S-T3 and 75S-T6 aluminum alloys and normalized SAE 4130 steel. Notches included: - (1) Stress-concentration factor 2.0: Central circular hole, symmetrical edge notches, and fillets - (2) Stress-concentration factor 4.0: Symmetrical edge notches and fillets For each type of specimen, fatigue tests were run at several levels of nominal mean stress, including a zero nominal mean stress. Fatigue strengths for these notched specimens are compared with values previously reported for unnotched specimens of the same sheet materials. #### INTRODUCTION This is the second of a series of reports summarizing work on an investigation of the fatigue strengths of metals used in aircraft construction. The investigation, conducted at Battelle Memorial Institute, under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics, has the objective of obtaining extensive basic data on the fatigue properties of three widely used sheet materials: 24S-T3 and 75S-T6 aluminum alloys and SAE 4130 steel. The previous report (reference 1) presented data on unnotched specimens. Such data are of interest in regard to basic properties of the materials, but are not adequate for design of structural parts. Structures nearly always have necessary stress-raisers, such as holes, cutouts, or other sharp changes in section that are critical in fatigue. Accordingly, the investigation was extended to study the behavior of notched specimens of the three sheet materials. The present report presents the results of fatigue tests on sheet specimens with several types of notches. The notch forms used were chosen in an effort to obtain systematic information covering several variables which might influence notch fatigue strength. Two notch severities, judged by the theoretical stress-concentration factor K_t , were used: $K_t=2.0$ and $K_t=4.0$. For the lower severity, notches of three different shapes (fillets, edge notches, and a circular hole) were selected; for the higher severity, two shapes (fillets and edge notches) were used. These different notch forms afford variation not only in stress-concentration factor but also in stress gradient and in volume of highly stressed material near the notch. Some of the results presented in the first report are recapitulated in the present report to allow discussion of fatigue-strength reduction caused by the various notch forms. The authors wish to thank Mr. Paul Kuhn, of the Structures Research Division of the Langley Aeronautical Laboratory of the NACA at Langley Field, Virginia, for his help and guidance during this investigation, and Mr. David O. Leeser, formerly on the staff of Battelle Memorial Institute, who did most of the experimental work described in this report. #### EXPERIMENTAL PROCEDURES #### Material The materials used in this investigation were supplied from selected stock retained for this purpose at the Langley Aeronautical Laboratory of the NACA. Coupons were cut from 0.090-inch-thick commercial sheets of 24S-T3 and of 75S-T6 aluminum alloys and from 0.075-inch-thick commercial sheets of normalized SAE 4130 steel. Details of sheet layout are to be found in reference 1. Static-strength properties, some of which are repeated from the previous report, are given in table 1. ## Notched Specimens Figures 1 and 2 show dimensional drawings of the notched specimens. Notch dimensions were chosen, on the basis of information available in the literature and unpublished information from the Langley Aeronautical Laboratory, to produce theoretical stress-concentration factors of 2.0 and 4.0. Notches were cut with tools specially machined to produce the contour desired in each case. Machining cuts were successively lighter, so that the depth of each of the last two cuts was about 0.0005 inch. Following machining, specimens were finished by electropolishing, which removed an average of about 0.0003 inch from the surface in the region of the notch and left a surface estimated to have about an 8-microinch profilometer value. Specimens were shadowgraphed after electropolishing: The dimensions and tolerances in figures 1 and 2 are those actually measured. It was estimated that errors in K_{t} due to variation in notch dimensions were not greater than those due to uncertainties in theoretical and photoelastic information on which notch design was based. Figures 3 and 4 show stress-coat patterns obtained on some of the notched specimens under tensile loading. These patterns indicate stress distributions such as would be expected from the theory of elasticity. Table 1 contains static-failure strengths for the notched specimens. Nominal tensile stresses at failure were not greatly different from values of ultimate tensile strength determined by tests on standard tensile specimens. Thus, stress-concentration effects of the notches were apparently alleviated by plastic deformation before static failure occurred. # Fatigue Test Procedures Fatigue tests were run on Krouse direct repeated-stress testing machines at speeds in the range 1100 to 1500 cycles per minute. A description of the machines is given in reference 1. It is estimated that precision of load measurement and maintenance was about ±3 percent in tension-tension tests. In tests involving reversal of load, sheet specimens were restrained from buckling by the use of guide plates. Estimation of precision of loading in such cases was indirect; it is believed that error in load value, in reversed-load testing, did not usually exceed ±5 percent. ## FATIGUE TEST RESULTS Results of axial-load fatigue tests are given in tables 2 to 7. These results are plotted in the form of S-N diagrams in figures 5 to 10. All stress values indicated on these diagrams are nominal net-area stresses. While the data are insufficient to afford a statistical evaluation of scatter, it may be noted that observed points fall closely on the S-N curves drawn. Figures 11 to 25 show the same results plotted in another manner: As constant-lifetime diagrams of nominal stress amplitude plotted against nominal mean stress. In these diagrams, however, "points" are not directly observed values but are values read from the faired S-N curves in figures 5 to 10. ## DISCUSSION OF RESULTS Diagrams such as those shown in figures 11 to 25 have been suggested for use in design. However, the designer encounters a great variety of notch forms and will seldom be concerned with one exactly like any used in this or any other laboratory fatigue investigation. Consequently, there is considerable interest in attempting to understand the notch fatigue behavior of a material sufficiently that results of a limited number of tests may be generalized to apply to the great variety of notch forms and loading conditions encountered in aircraft service. Tables 8 to 10 summarize fatigue-strength values for notched specimens, and include corresponding values previously reported for unnotched specimens of the same sheet materials. The following discussion is based on values listed in these summary tables. In view of the local nature of fatigue failure, it is expected that the fatigue strength of a notched specimen will be strongly influenced by stress concentration at the root of the notch. Thus, it seems desirable to examine the results of notch fatigue tests in terms of estimated peak stress at the notch root. Conventionally, such examination is usually made in terms of a "fatigue-strength reduction factor," denoted by K_f , and defined as the ratio of unnotched fatigue strength to notched fatigue strength. While such a definition is unambiguous for test runs under fully reversed load, further specification is needed when the mean load differs from zero. At least three definitions of K_f have been advocated for such cases: (1) Load-ratio definition, $K_{\hat{I}} \equiv \frac{Maximum \ stress \ for \ unnotched \ specimen}{Nominal \ maximum \ stress \ for \ notched \ specimen \ at \ same \ load \ ratio \ and \ lifetime$ - (2) Load-amplitude definition, - $K_{f}^{i} \equiv \frac{Stress \ amplitude \ for \ unnot ched \ specimen}{Nominal \ stress \ amplitude \ for \ not ched \ specimen \ at \ same \ nominal \ mean \ stress \ and \ lifetime$ - (3) Maximum load at fixed mean load definition, - $K_f''' \equiv \frac{\text{Maximum stress for unnotched specimen}}{\text{Nominal maximum stress for notched specimen at same nominal mean stress and lifetime}}$ Calculations of K_f , K_f , and K_f , for the values listed in tables 8, 9, and 10, show that none of these three fatigue-strength reduction factors are constant for the full range of notch forms and stress levels covered in this investigation. In general, K_f and K_f " are less than K_t , while K_f ' sometimes exceeds K_t . Design, based on the approximation that any one of these K_f 's is predictable from the theoretical stress-concentration factor of the notch or even upon the assumtpion that a K_f (like one of the three defined here) is constant over a range of stress levels, might be seriously in error. Consideration of the probable peak stress at the notch root, in relation to the stress levels at which fatigue
failures occur, indicates one reason for this lack of simple correlation between $K_{\rm f}$ and $K_{\rm t}$. For a great deal of the region of stress, plastic flow undoubtedly occurred at the point of highest stress. It will be convenient, in further discussion, to treat, first, low stress levels for which such plastic flow may be negligible and, second, the remaining part of the stress field investigated. #### Region of Low Maximum Stress In the region of low stresses and little plastic flow, the peak stress at the root of a notch should be given by K_t times the nominal stress to which the notched specimen is loaded. Thus, at low stress levels, one might expect, insofar as fatigue failure depends on maximum stress, that a notched specimen under a cycle from a nominal minimum stress m_n to a nominal maximum stress M_n would fail in the same lifetime as an unnotched specimen under a cycle from minimum stress $K_t m_n$ to maximum stress $K_t m_n$. In this case, the "load-ratio fatigue-strength reduction factor" K_t should equal K_t through this low-stress region. Examination of tables 11, 12, and 13 shows that $K_{\hat{I}}$ usually approaches $K_{\hat{t}}$ in regions of low maximum stress. However, even in such regions, $K_{\hat{I}}$ is often less than $K_{\hat{t}}$, particularly for the more severe notches ($K_{\hat{t}} = 4$). Neuber (reference 2) suggests that departures from elastic theory should be expected in notches so sharp that stress gradients are large over regions of local inhomogeneity and anisotropy of the material under investigation. He proposes using a "technical stress-concentration factor," defined by $$K_{N} \approx 1 + \frac{K_{t} - 1}{1 + \sqrt{\frac{\rho^{r}}{\rho}}} \tag{1}$$ In this defining equation, ρ is the radius of the notch, and $\rho^{\text{!}}$ is a constant (with the dimension of length) of the material. Neuber suggests that the value of $\rho^{\text{!}}$ may be about 0.02 inch for many materials. Table 14 shows values of K_N for the notches used in this investigation for several values of $\rho^{\text{!}}$. Comparing these values with values of K_f in tables 11, 12, and 13, it appears that K_f is often nearer to K_N (for $\rho^{\text{!}}=0.02$ in.) than to K_t . No other value of $\rho^{\text{!}}$ affords much better agreement for all values of K_f . Thus, results obtained in low-stress-level fatigue tests on the notched sheet specimens are approximately predictable by assuming $K_{\rm T}=K_{\rm N}.$ However, until the limitations of this assumption are more completely established, such predictions should be used with caution in design of notched parts. 7 Figure 26 is a schematic illustration of effects likely to occur in tension-tension tests in which the maximum stress is high enough to cause local yielding at the notch root. Two effects are to be noted: - (1) At the top of the load cycle, the maximum local stress is less than $K_{t}M_{n}$; that is, local deformation alleviates the stress concentration predicted for ideally elastic material - (2) Upon unloading to minimum load, residual stress at the notch root decreases the minimum local stress below that expected for ideally elastic behavior Both of these effects have been observed experimentally (references 3 to 7). Some time ago, Hartmann (reference 8) suggested an approximate method of estimating the alleviation of the stress-concentration factor at maximum load; Stowell (reference 4) has recently suggested another method of approximating the local maximum stress. No satisfactory method of theoretically estimating the residual stress and the resultant minimum local stress has been reported. For fully reversed loading through large stress amplitudes, additional complications may occur. In this case, local yielding may take place both during tensile loading and during compressive loading. Cumulative strain hardening may alter the behavior during successive load cycles. Behavior in this region is too complex for prediction on the basis of currently available information. If this picture of fatigue-strength reduction at high stress levels is correct, it would be expected that the stress ratio would differ from the load ratio, and that K_{f} would differ from K_{t} (or from K_{N}). In fact, it appears doubtful that any simply defined fatigue-strength reduction ratio could be expected to remain constant over the full range of stress levels. It is possible that detailed consideration of effects of plastic deformation and residual stresses will afford approximate rules useful in design. #### CONCLUSIONS Axial-load fatigue test results have been obtained on notched sheet specimens of 24S-T3 and 75S-T6 aluminum alloys and of SAE 4130 steel. Several notch forms were used and tests were run at several levels of mean stress. The results show that: - 1. Reduction in fatigue strength (in terms of nominal stresses) varies with: - (a) Notch severity (theoretical stress-concentration factor) - (b) Notch form, especially for severe notches - (c) Material - (d) Stress level both nominal mean stress and nominal stress amplitude - 2. Simply defined fatigue-strength reduction factors do not appear to have useful correlation with the theoretical stress-concentration factor. Battelle Memorial Institute Columbus, Ohio, August 15, 1950 2 #### REFERENCES - 1. Grover, H. J., Bishop, S. M., and Jackson, L. R.: Fatigue Strengths of Aircraft Materials Axial-Load Fatigue Tests on Unnotched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel. NACA TN 2324, 1951. - 2. Neuber, H.: Theory of Notch Stresses: Principles for Exact Stress Calculation. Translation 74, The David W. Taylor Model Basin, U. S. Navy, Nov. 1945. - 3. Griffith, George E.: Experimental Investigation of the Effects of Plastic Flow in a Tension Panel with a Circular Hole. NACA IN 1705, 1948. - 4. Stowell, Elbridge Z.: Stress and Strain Concentration at a Circular Hole in an Infinite Plate. NACA TN 2073, 1950. - 5. Norton, J. T., and Rosenthal, D.: Investigation of the Behavior of Residual Stresses under External Load and Their Effect on Safety. The Welding Jour., vol. 22, no. 2, Feb. 1943, pp. 63-s 78-s. - 6. Rosenthal, D., Sines, G. H., and Zizicas, G.: The Effect of Residual Compression on Fatigue. The Welding Jour., vol. 28, no. 3, March 1949, pp. 98-s 103-s. - 7. Sines, G. H.: The Effect of Residual Stress upon the Fatigue of Notched Specimens. Master's Thesis, Univ. of Calif., July 1949. - 8. Hartmann, E. C.: Fatigue Test Results Their Use in Design Calculations. Product Engineering, vol. 12, no. 2, Feb. 1941, pp. 74-78. 4 # TABLE 1.- STATIC TENSILE AND COMPRESSIVE STRENGTHS OF SOME ALUMINUM AND STEEL SHEET SPECIMENS USED IN FATIGUE TESTS | | Grain | Clanda | Average tensile properties | | | Average compressive properties (a) | | |--------------------|---------------|-----------------------------------|----------------------------|----------------------------|-------------------------------|------------------------------------|----------------------------------| | Material direction | | Type specimen | Elongation
(percent) | Yield
strength
(psi) | Ultimate
strength
(psi) | Yield
strength
(psi) | Modulus of elasticity (psi) | | 248-T3
248-T3 | With
Cross | Unnotched
Unnotched | 18.2
18.3 | 54,000
50,000 | 73,000
71,000 | 44,500
50,000 | 10.65 × 10 ⁶
10.45 | | 248-T3 | With | Hole-type notch (Kt = 2.0) | | | 71,500 | | | | 248-13 | With | Fillet-type notch (Kt = 2.0) | | | 72,000 | | | | 248-13 | With | Edge-cut notch (Kt = 2.0) | | | 74,500 | | | | 248-T3 | With | Fillet-type notch (Kt = 4.0) | | | 65,900 | | | | 248-T3 | With | Edge-cut notch (Kt = 4.0) | | | 65,400 | | | | 75 8- T6 | With | Unnotched. | 11.4 | 76,000 | 82,500 | 74,000 | 10.45 | | 758-T6 | Cross | Unnotched | 11.0 | 75,000 | 82,500 | 78,500 | 10,55 | | 758-T6 | With | Hole-type notch (Kt = 2.0) | | | 80,500 | | | | 756-T6 | With | Fillet-type notch $(K_t = 2.0)$ | | | 82,500 | | | | 758-116 | With | Edge-cut notch (Kt = 2.0) | | ~~~~ | 87,500 | | | | 758-116 | With | Fillet-type notch $(K_t = 4.0)$ | | | 80,000 | | | | 758-116 | With | Edge-cut notch (Kt = 4.0) | | | 82,500 | | 4 | | 4130 | With | Unnotched | 14.25 | 98,500 | 117,000 | 86,000 | 30.4 | | 4130 | Cross | Unnotched | 12.5 | 101,000 | 120,000 | 97,000 | 31.3 | | 4130 | With | Hole-type notch (Kt = 2.0) | | | 120,500 | | | | <u></u> 4130 | With | Fillet-type notch ($K_t = 2.0$) | | | 119,000 | | | | 4130 | With | Edge-cut notch (Kt = 2.0) | | | b117,000 | | | | 4130 | With | Fillet-type notch $(K_t = 4.0)$ | | | 119,000 | | | | 4130 | With | Edge-cut notch (Kt = 4.0) | | | 129,000 | | | evalues for unnotched specimens taken from reference 1. All stress values nominal, based on original net section. ^bSpecimen failed in grip section at load noted. TABLE 2.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 245-T3 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks | | | | |--|--|--|--|--|--|--| | | (a) Nomi | nal mean stress, (|) psi | | | | | | Но | le-type notch | | | | | | A2752C
A6552C
A1052C
A952C
A1552C
A2052C
A1852C | 34,000
28,000
24,000
20,000
15,000
12,000
10,000 | 2,500
17,500
28,800
70,000
405,000
>10,907,000
>10,994,800 | Did not fail
Do. | | | | | | . Ed | ge-cut notch | | | | | | A7982B
A8482B
A7383B
A8083B
A3082B
A8882B
A2982B
A7382B | 35,000
35,000
30,000
30,000
28,000
25,000
20,000
15,000 | 3,400
3,500
6,500
7,700
 | Buckled | | | | | A35S2B
A40S2B
A1S2B
A74S3B |
15,000
15,000
13,500
11,000 | 160,000
210,000
287,000
>10,586,000 | Failed in grip Failed in flaw Did not fail | | | | | | Fillet-type notch | | | | | | | A4052A
A3952A
A7352A
A3452A
A7852A | 30,000
22,500
18,000
15,000
12,000 | 10,000
64,000
233,000
500,000
5,251,800 | · | | | | TABLE 2.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 24S-T3 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 - Continued | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks
(1) | | | | | | |--|--|---|----------------|--|--|--|--|--| | | (b) Nominal mean stress, 10,000 psi | | | | | | | | | |] | Hole-type notch | | | | | | | | A2882C A1282C A5382C A5182C A6382C A6282C A5482C A5582C A5982C A5782C A5782C A1482C A2482C | 46,000
43,000
40,000
35,000
35,000
30,000
25,000
22,000
20,000
19,000
18,500 | 2,700
5,500
6,100
16,500
17,100
30,100
36,200
118,000
283,700
542,700
181,400
5,564,300
6,568,100 | Failed in flaw | | | | | | | A2282C | 18,000 | >13,013,200 | Did not fail | | | | | | | | I | dge-cut notch | | | | | | | | A7583B A8783B A4782B A4782B A4682B A4582B A3282B A7482B A7982B A3882B A8382B A8182B | 44,000
44,000
40,000
35,000
35,000
30,000
25,000
22,000
21,000
20,000
19,000 | 2,900
3,000
6,500
14,900
15,500
35,000
43,400
124,200
168,700
507,400
7,687,400
>15,018,800 | Did not fail | | | | | | | | F | lllet-type notch | | | | | | | | A8752A
A7152A
A4452A
A8052A
A7752A
A3352A
A8852A
A8152A
A8552A
A8252A | 43,000
40,000
35,000
35,000
30,000
25,000
22,500
22,000
20,000 | 4,000
6,500
27,100
30,000
• 73,200
75,100
129,200
288,100
283,200
>10,486,700 | Did not fail | | | | | | Unless otherwise noted, specimens failed at notch root in region of critical stress concentration. TABLE 2.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 24S-T3 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 - Continued | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks
(1) | |---|--|---|---| | | (c) Nomina | l mean stress, 20,000 |) psi | | | | Hole-type notch | · | | A2652C A1952C A1652C A9652C A9652C A10052C A9152C A4952C A5652C A9552C | 52,500
52,500
52,500
49,000
45,000
40,000
35,000
31,000
29,500
29,500
27,500 | 2,300
4,000
3,000
7,100
15,600
35,600
75,400
213,200
2,319,700
9,536,000
>10,936,000 | Did not fail | | | | Edge-cut notch | | | A84s2b A85s3b A70s2b A42s2b A91s2b A78s2b A80s2b A93s2b A90s2b A82s2b A85s2b A85s2b A85s2b A85s2b | 52,500
49,000
49,000
45,000
45,000
35,000
35,000
31,500
31,000
29,500
27,500 | 3,100
9,300
6,000
21,800
25,300
48,300
66,500
82,200
28,200
28,200
128,500
218,700
>13,114,700
>15,671,300 | Failed in flaw Failed lower grip Did not fail | | | I | fillet-type notch | | | A7982A
A8382A
A8982A
A4082A
A9282A
A9682A
A6982A
A7082A
A9482A | 52,500
49,000
45,000
40,000
35,000
31,500
29,500
29,500 | 4,500
8,300
19,800
30,300
67,000
595,400
1,042,400
>10,305,000
>12,693,800 | Did not fail
Do. | TABLE 2.- AXTAL-LOAD FATIGUE TEST RESULTS FOR 24S-T3 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 - Concluded | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks
(1) | |--|--|---|---------------------| | | (d) Nominal m | ean stress, 30,0 | 00 psi | | | Hol | e-type notch | | | A1782C
A2382C
A5082C
A6782C
A2182C
A6682C
A6482C
A6882C | 60,000
54,000
50,000
45,000
42,500
40,000
39,000
38,000 | 2,000
14,000
21,800
55,700
68,500
243,800
395,700
>12,000,600 | Did not fail | | | Edg | e-cut notch | | | A7083B A8183B A8382B A4482B A7183B A4882B A3482B A3682B A8782B | 60,000
60,000
54,000
50,000
50,000
45,000
42,500
40,000
40,000
38,500 | 4,300
4,500
9,600
25,700
25,700
63,500
152,900
259,200
315,500
>10,537,100 | Did not fail | | | Fill | et-type notch | | | A2952A
A3252A
A4852A
A4352A
A3852A
A4752A
A3652A
A4552A | 54,000
50,000
45,000
45,000
42,500
40,000
39,000
38,000 | 17,600
29,200
47,000
95,300
114,600
173,200
>10,608,000
>11,541,600 | Did not fail
Do. | Unless otherwise noted, specimens failed at notch root in region of critical stress concentration. table 3.- axial-load fatigue test results for 24s-t3 aluminum shekt specimens; notched, $K_{\rm t}$ = 4.0 | Nominal maximum Life Remarks stress (cycles) | | |--|----------------| | Specimen stress (cycles) Remarks | 1 | | stress (cycles) | | | | - | | (psi) (1) | | | (a) Nominal mean stress, 0 psi | | | Edge-cut notch | | | Al083B 22,500 3,200 | | | A4783B 17,500 10,000 | | | A983B 12,500 53,400 | | | A583B 10,000 121,500 | | | A3483B 7,500 1,256,700 | | | A4483B 7,000 6,309,100 | | | A4383B 8,000 944,400 | | | A5083B 5,000 >11,169,000 Did not fax | 11 | | Fillet-type notch | | | | | | Alisa 25,000 4,400 | | | A1683A 20,000 15,000 | | | A3083A 15,500 38,500 | ľ | | A1483A 12,500 140,100 | | | A4683A 9,500 1,066,000 | | | A5083A 9,500 548,700 | | | A4083A 7,500 >10,969,000 Did not far | ii. | | (b) Nominal mean stress, 10,000 psi | | | Edge-cut notch | | | A2653B 30,000 2,000 | | | A3883B 30,000 4,000 | | | A3183B 27,500 3,000 | | | A4583B 27,500 5,700 | | | A4083B 25,000 12,000 | | | A3383B 22,500 26,000 | | | A2483B 20,000 52,000 | | | A2183B 20,000 62,500 | | | A1583B 17,500 71,000 | | | A1883B 17,500 61,500 | | | A383B 16,500 112,000 | | | A2883B 15,000 >10,533,800 Did not fa | 11 | | Alisab 15,000 >10,408,300 Do. | - - | | Fillet-type notch | | | A)1702A 25.000 2.500 | , | | A4183A 35,000 2,500
A1983A 32,500 3,100 | | | A1983A 32,500 3,100
A1383A 32,500 2,800 | | | | | | | | | | | | | | | A383A 22,500 49,800 | | | A4483A 20,000 87,000 | | | A4283A 17,500 653,700
A683A 15,000 >10,733,000 Did not fa | £7 | | A683A 15,000 >10,733,000 Did not fa | <u></u> | $^{\mbox{\scriptsize l}}\mbox{\scriptsize U}\mbox{\scriptsize note}\mbox{\scriptsize secimens failed in notch root in region of critical stress concentration.}$ TABLE 3.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 24S-T3 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 4.0 - Concluded | | | | , | | | | |--|--|--|--------------|--|--|--| | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks | | | | | | (c) Nominal m | ean stress, 20,000 psi | | | | | | | Edg | e-cut notch | | | | | | A1283B
A2983B
A4983B
A1683B
A3783B
A1383B | 35,000
32,500
30,000
27,500
25,000
22,500 | 3,700
9,000
26,600
39,400
1,343,000
>10,321,500 | Did not fail | | | | | | Fill | et-type notch | | | | | | A1753A
A4853A
A3553A
A3853A
A2553A
A453A
A2253A
A583A
A4963A
A3663A
A1083A
A3383A | 40,000
37,500
35,000
32,500
30,000
30,000
27,500
27,500
27,500
25,000
25,000
22,500 | 4,000
6,000
10,200
15,500
21,000
44,500
69,800
80,000
161,500
300,000
5,797,000
>10,213,000 | Did not fail | | | | | | | ean stress, 30,000 psi | | | | | | | Edge | e-cut notch | | | | | | A46S3B
A42S3B
A17S3B
A32S3B
A20S3B
A39S3B
A30S3B | 47,500
45,000
42,500
40,000
37,500
35,000
32,500 | 2,200
4,000
7,000
14,000
24,500
124,500
>10,450,000 | Did not fail | | | | | | Fillet-type notch | | | | | | | A2163A
A853A
A3183A
A2953A
A2453A
A4753A
A1583A | 47,500
45,000
42,500
40,000
37,500
35,000
32,500 | 3,300
7,500
11,500
26,700
61,000
413,700
>10,703,000 | Did not fail | | | | Unless otherwise noted, specimens failed in notch root in region of critical stress concentration. table 4.- Axial-load fatigue test results for 75s-t6 aluminum sheet specimens; notched, κ_{t} = 2.0 | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks | |--|--
--|---------------------------------------| | | (a) Nomin | nal mean stress, 0 ps | ī | | | Но | le-type notch | | | B79S2C
B100S2C
B99S2C
B94S2C
B95S2C
B86S2C
B91S2C | 36,000
34,000
28,000
24,000
21,000
18,000 | 3,400
3,200
14,000
42,000
86,000
412,400
1,028,000 | | | | Ed | ge-cut notch | | | B100S3B
B95S3B
B50S2B
B93S3B
B92S3B
B47S2B
B44S2B
B45S3B
B26S2B
B6S2B
B17S2B
B28S2B
B10S2B
B10S2B
B43S2B | 34,000
34,000
34,000
30,000
30,000
28,000
24,000
21,000
18,000
15,000
15,000
15,000
12,500 | 5,500
5,400
4,000
12,000
11,400
19,000
23,700
89,000
213,000
347,500
579,000
1,564,300
>10,853,500 | Buckled Failed in grip Did not fail | | | F11. | let-type notch | | | B4552A
B4262A
B3552A
B2652A
B3052A
B1052A
B3752A | 34,000
34,000
34,000
31,000
31,000
28,000
28,000 | 10,000
11,500
13,300
14,600 | Buckled
Buckled | | B1782A
B2282A
B2382A
B1482A | 24,000
21,000
18,000
15,000 | 39,700
80,000
115,000
4,541,800 | ` | TABLE 4.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 758-T6 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 - Continued | Specimen | Nominal maximum stress (psi) | Life
(cycles) | Remarks | | | | | |--|--|---|---|--|--|--|--| | | (c) Nomin | al mean stress, 20 | 0,000 psi | | | | | | | Hole-type notch | | | | | | | | B7452C
B8552C
B4852C
B5852C
B5752C
B7252C
B6652C
B6752C
B9352C
B9652C | 56,000
55,000
50,000
45,000
40,000
35,000
32,000
30,000
29,000
28,000 | 2,200
3,000
5,400
9,300
12,000
29,500
46,000
165,600
536,100
>11,250,000 | Did not fail | | | | | | | | Edge-cut notch | | | | | | | B21S2B
B97S3B
B3S2B
B14S2B
B40S2B
B11S2B
B12S2B
B27S2B
B23S2B
B18S2B | 56,000
54,000
50,000
45,000
40,000
35,000
32,500
30,000
29,000
28,000 | 2,100
3,200
5,000
11,500
13,400
28,000
76,800
621,900
>284,000
>10,781,700 | Failed above lower grip
Did not fail | | | | | | | Fillet-type notch | | | | | | | | B11S2A
B6S2A
B1S2A
B2S2A
B19S2A
B43S2A
B13S2A
B34S2A | 54,000
50,000
45,000
40,000
35,000
32,500
30,000
29,000 | 5,400
9,000
17,500
18,500
33,500
53,000
105,000
>10,249,900 | Did not fail | | | | | TABLE 4.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 75S-T6 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 - Continued | Specimen | Nominal maximum stress (psi) | Life
(cycles) | Remarks - (1) | | | | |--|--|---|---|--|--|--| | | · (b) Nomin | al mean stress, 10 | ,000 psi | | | | | | | Hole-type notch | | | | | | B73S2C
B75S2C
B71S2C
B60S2C
B65S2C
B70S2C
B92S2C
B68S2C
B59S2C
B69S2C | 46,600
46,500
45,000
40,000
35,000
30,000
25,000
22,000
20,500
20,000 | 2,600
2,700
3,100
6,800
13,000
22,500
60,700
227,700
>12,710,400
>10,547,800 | Did not fail
Do. | | | | | | Edge-cut notch | | | | | | | B4S2B
B25S2B
B19S2B
B7S2B
B29S2B
B12S2B
B33S2B
B34S2B
B5S2B | 45,000
40,000
35,000
30,000
25,000
23,500
22,500
22,500
20,500 | 3,000
7,000
18,500
46,200
242,000
2,678,600
627,500
>10,581,900
>12,653,200 | Failed in upper grip
Did not fail
Do. | | | | | | - | Fillet-type notch | | | | | | B12S2A
B31S2A
B44S2A
B41S2A
B7S2A
B16S2A
B26S2A
B27S2A | 45,750
40,000
35,000
30,000
25,000
22,500
22,500
21,000 | 5,800
13,500
20,500
59,900
189,600
718,500
2,998,000
>10,336,900 | Failed in upper grip
Did not fail | | | | TABLE 4.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 758-T6 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 - Concluded | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks
(1) | | | | |--|--|--|----------------------|--|--|--| | | (d) Nominal mean stress, 30,000 psi. | | | | | | | | | Hole-type notch | | | | | | B6382C
B7682C
B6482C
B8382C
B9782C
B8782C
B8882C
B9882C
B6282C
B6182C
B5682C | 68,000
66,100
65,000
60,000
55,000
50,000
45,000
42,500
39,000
38,000 | 1,800
2,400
2,200
5,200
7,500
12,000
24,800
42,800
198,200
527,300
>10,112,300 | Did not fail | | | | | | | Edge-cut notch | | | | | | B39S2B
B53S2B
B22S2B
B45S2B
B31S2B
B30S2B
B36S2B
B35S2B
B15S2B
B16S2B | 66,500
63,000
60,000
55,000
50,000
45,000
42,500
39,000
38,000 | 2,800
2,300
4,100
8,300
12,500
24,000
35,000
81,000
>10,062,700
>10,363,600 | Did not fail | | | | | | | Fillet-type notch | | | | | | B3S2A
B15S2A
B4S2A
B2OS2A
B36S2A
B38S2A
B39S2A
B5S2A | 65,000
60,000
55,000
50,000
45,000
42,500
40,000
38,000 | 4,800
8,000
8,700
11,500
27,000
36,000
89,000
>9,978,500 | Failed in upper grip | | | | Unless otherwise noted, specimens failed in notch root in region of critical stress concentration. | | | | , | | | | |--|--|--|--------------------------------|--|--|--| | Specimen | Nominal
maximum
stress
(ps1) | Life
(cycles) | Remarks | | | | | | (a) Nomina | al mean stress, O psi | | | | | | | Edge | e-cut notch | | | | | | B4583B
B1083B
B3583B
B3683B
B1983B
B2883B
B2083B
B3183B
B2983B | 20,000
16,250
12,500
9,250
8,500
7,500
5,500
4,000 | 5,300
17,800
70,000
339,200
969,200
1,652,300
4,722,000
>12,405,300
>10,247,800 | Did not fail
Do. | | | | | | Fille | et-type notch | | | | | | B383A
B4883A
B2683A
B3983A
B3183A
B4383A
B4583A | 22,500
20,000
16,250
12,500
10,000
9,000
7,500 | 8,200
17,000
63,500
182,000
4,400,000
3,097,100
>10,244,500 | Failed in flaw
Did not fail | | | | | | (b) Nominal mean stress, 10,000 psi | | | | | | | | Edge | e-cut notch | | | | | | B1683B
B2683B
B3883B
B1783B
B2383B
B183B
B483B
B483B
B883B
B4183B | 30,000
25,000
22,500
20,000
20,000
20,000
17,500
15,000 | 2,000
8,000
13,000
41,000
39,000
32,000
48,500
89,000
9,610,300 | Failed in flaw | | | | | B4383B | 12,500 | >12,281,600 | Did not fail | | | | | | Fille | et-type notch | | | | | | B1583A
B3883A
B583A
B483A
B2183A
B1683A
B4983A
B3383A
B3783A | 30,000
27,500
25,000
22,500
22,500
20,000
20,000
20,000
20,000
20,000 | 4,000
10,000
14,500
45,800
39,500
39,000
43,000
140,000
82,500
1,676,000
>10,000,000 | Buckled
Do.
Did not fail | | | | | B2783A | 15,000 | | D10 100 1011 | | | | 22 NACA TN 2389 TABLE 5.- AXIAL-LOAD FATIGUE TEST RESULTS FOR 759-T6 ALUMINUM SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 4.0 - Concluded | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks | | | | | | | | | |---|--|---|--------------|--|--|--|--|--|--|--|--| | | (c) Nominal mean stress, 20,000 psi | | | | | | | | | | | | | Edge-cut notch | | | | | | | | | | | | B21S3B
B25S3B
B11S3B
B9S3B
B37S3B
B48S3B
B6S3B
B6S3B
B40S3B | 35,000
32,500
30,000
30,000
27,500
25,000
22,500
22,500 | 2,500
5,500
10,500
10,700
16,800
46,500
566,500
>10,457,000 | Did not fail | | | | | | | | | | | Fille | et-type notch | | | | | | | | | | | B2953A
B4753A
B2553A
B4053A
B3453A
B2453A | 35,000
32,500
30,000
27,500
25,000
22,500 | 4,000
9,800
18,700
31,000
467,000
>9,475,000
ean stress, 30,000 psi | Did not fail | | | | | | | | | | | | e-cut notch | | | | | | | | | | | B783B
B2583B
B1383B
B1483B
B383B
B4783B | 42,500
40,000
40,000
37,500
35,000
32,500 | 4,000
10,000
7,800
15,000
32,700
>10,744,000 | Did not fail | | | | | | | | | | | Fille | et-type notch | | | | | | | | | | | B1783A
B3253A
B1453A
B953A
B2083A
B1153A | 45,000
42,500
40,000
37,500
35,000
32,500 |
3,500
6,300
12,300
22,000
119,000
>10,000,000 | Did not fail | | | | | | | | | TABLE 6.- AXIAL-LOAD FATIGUE TEST RESULTS FOR SAE 4130 STEEL SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 2.0 | Specimen | Nominal
maximum
stress
(psi) | Life
(cycles) | Remarks | | | | | | | | | |--|--|---|---|--|--|--|--|--|--|--|--| | | (a) Nominal mean stress, O psi | | | | | | | | | | | | | Но | le-type notch | | | | | | | | | | | 062520
061520
060520
099520
056520
059520 | 45,000
38,000
32,000
28,500
25,000
25,000 | 40,700
86,000
291,000
1,083,600
>11,429,000
>12,347,800 | .Did not fail
Do. | | | | | | | | | | | Ed | ge-cut notch | | | | | | | | | | | C51S2B
C197S2B
C82B
C15S2B
C9S2B
C13S2B
C32S2B
C14S2B
C45S2B
C47S2B
C47S2B
C50S2B
C49S2B | 50,000
50,000
45,000
45,000
45,000
38,000
32,000
28,500
25,000
25,000
27,000
50,000 | 27,000
35,000
43,000

45,700
82,000
635,000
1,712,700
>10,464,300
>10,900,000
2,153,500 | Failed in grip Specimen buckled Did not fail Do. Failed in grip Do. | | | | | | | | | | | Fill | et-type notch | | | | | | | | | | | C40S2A
C29S2A
C42S2A
C25S2A
C26S2A
C13S2A | 45,000
38,000
32,000
28,000
25,000
50,000 | 53,000
147,600
628,500
1,616,000
>10,468,400
29,000 | Did not fail | | | | | | | | | TABLE 6.- AXIAL-LOAD FATIGUE TEST RESULTS FOR SAE 4130 STEEL SHEET SPECIMENS; NOTCHED, $K_{\mbox{\scriptsize t}}=2.0$ - Continued | Specimen | Nominal maximum Life stress (cycles) (psi) | | Remarks | | | | | | | | | |---|--|--|--------------------------------|--|--|--|--|--|--|--|--| | | (b) Nominal mean stress, 10,000 psi | | | | | | | | | | | | | H | ole-type notch | | | | | | | | | | | C86S2C
C100S2C
C92S2C
C84S2C
C63S2C
C94S2C
C83S2C | 57,500
55,000
50,000
45,000
40,000
37,500 | 30,700
34,000
98,000
222,000
822,000
1,452,700
>10,043,000 | Did not fail | | | | | | | | | | | E | lge-cut notch | | | | | | | | | | | C46S2B
C48S2B
CXXXXS2B
C43S2B
C31S2B
C30S2B
CXS2B
C4S2B
C4S2B
C39S2B
C38S2B
C44S2B
C35S2B
C31S2B | 60,000
60,000
57,500
57,500
55,000
50,000
45,000
40,000
40,000
37,500
37,500
35,000 | 28,500
31,300
31,500
31,700
55,900
93,000
151,000
255,000
290,000
421,000
900,000
1,101,600
540,000
>10,608,600 | Failed in flaw
Did not fail | | | | | | | | | | | Fi. | llet-type notch | | | | | | | | | | | C3452A
C1152A
C1652A
C3252A
C2852A
C1052A
C2752A
C252A | 60,000
57,500
55,000
50,000
45,000
40,000
37,500
35,000 | 36,000
45,800
103,000
235,000
545,000
1,157,000
>10,497,300 | Specimen buckled Did not fail | | | | | | | | | Unless otherwise noted, specimens failed at notch root in region of critical stress concentration. TABLE 6.- AXIAL-LOAD FATIGUE TEST RESULTS FOR SAE 4130 STEEL SHEET SPECIMENS; NOTCHED, $K_{\rm t}=2.0$ - Continued | Specimen | Nominal maximum stress (psi) | Life (cycles) | Remarks
· (1) | | | | | | | | |---|--|---|---|--|--|--|--|--|--|--| | | (c) Nominal mean stress, 20,000 psi Hole-type notch | | | | | | | | | | | C6782C
C7882C
C6682C
C6882C
C8182C
C7582C
C7682C | C7882C 60,000 62,000 C6682C 55,000 175,000 C6882C 50,000 517,000 C8182C 47,500 857,600 C7582C 45,000 1,184,700 | | | | | | | | | | | | E | lge-cut notch | | | | | | | | | | C19952B
C18952B
C3452B
C2252B
C2752B
C2052B
C1152B
C3652B
C752B
C1252B
C4252B | 72,500
70,000
70,000
65,000
60,000
55,000
47,500
45,000
45,000
42,500 | 18,000
24,500
28,000
39,700
70,900
227,000
535,900
1,002,000
1,557,700
>1,528,000
>10,480,300 | Failed in upper grip
Did not fail | | | | | | | | | | F1 | llet-type notch | | | | | | | | | | C3552A
C2452A
C852A
C3652A
C4152A
C1552A
C3852A
C1752A
C552A
C2252A | 70,000 65,000 60,000 55,000 50,000 47,500 47,500 45,000 42,500 | 33,300
48,000
102,000
296,000
708,000
884,900
583,000
821,500
>10,583,700
>11,013,000 | Failed in pit
Do.
Did not fail
Do. | | | | | | | | TABLE 6.- AXIAL-LOAD FATIGUE TEST RESULTS FOR SAE 4130 STEEL SHEET SPECIMENS; NOTCHED, $K_{\rm t}=2.0$ - Concluded | Specimen | Nominal maximum stress (psi) | Life
(cycles) | Remarks
(1) | | | | | | | | |--|--|---|------------------------------------|--|--|--|--|--|--|--| | (d) Nominal mean stress, 30,000 psi | | | | | | | | | | | | | Hole-type notch | | | | | | | | | | | 079820
097820
077820
070820
074820
072820
080820
073820 | 75,000
75,000
70,000
65,000
60,000
60,000
55,000
52,500 | 36,000
38,500
60,000
128,000
287,600
104,800
610,600
>10,824,600 | 1/2-in. crack in flaw Did not fail | | | | | | | | | | | Edge-cut notch | | | | | | | | | | C37S2B
C188S2B
C194S2B
C29S2B
C28S2B
C18S2B
C24S2B
C33S2B
C19S2B | 80,000
80,000
80,000
75,000
70,000
65,000
60,000
57,500
55,000 | 26,000
27,800
28,600
38,000
58,000
151,600
402,400
>10,262,800
>10,218,900 | Did not fail
Did not fail | | | | | | | | | | | Fillet-type notch | | | | | | | | | | C4152A
C1852A
C3152A
C3352A
C3052A
C952A
C2352A
C452A
C3952A
C2152A
C4362A | 75,000
75,000
75,000
70,000
65,000
60,000
57,500
57,500
57,500
57,500 | 31,000
21,000
46,500
80,000
138,000
357,000
179,100
252,400
333,700
289,700
>10,729,000 | Failed in flaw Did not fail | | | | | | | | Unless otherwise noted, specimens failed at notch root in region of critical stress concentration. TABLE 7.- AXIAL-LOAD FATIGUE TEST RESULTS FOR SAE 4130 STEEL SHEET SPECIMENS; NOTCHED, $K_t = 4.0$ | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | |--------------------|------------------|---------------------------------------|---------------------------------------|--|--|--|--|--|--|--| | | Nominal | 7.0. | | | | | | | | | | Specimen | maximum | Life | Remarks | | | | | | | | | Specimen | stress | (cycles) | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | (psi) | | (1) | | | | | | | | | | (a) Nomi | nal mean stress, O psi | | | | | | | | | | Edge-cut notch | | | | | | | | | | | | C14982B | 42,500 | 5,400 | Specimen buckled | | | | | | | | | C10482B | 42,500 | 14,800 | DECOTED SECTEOR | | | | | | | | | C11182B | 37,500 | 19,700 | | | | | | | | | | C14482B | | 19,000 | | | | | | | | | | 1 | 37 , 000 | | | | | | | | | | | C130S2B | 32,500 | 30,500 | • | | | | | | | | | C125S2B | 27,500 | 107,000 | | | | | | | | | | C3882B | 27,000 | 94,300 | | | | | | | | | | C115S2B | 22,500 | 269,000 | | | | | | | | | | C12252B | 17,500 | 537,900 | İ | | | | | | | | | C1428218 | 15,000 | 1,719,000 | | | | | | | | | | C14682B | 500ر12 | >10,325,000 | Did not fail | | | | | | | | | | F11 | let-type notch | | | | | | | | | | g100000 | hE 000 | 1. 1.00 | Character 3 - 3-3 - 3 | | | | | | | | | C190S3Z | 45,000 | 4,400 | Specimen buckled | | | | | | | | | C18983A | 45,000 | 13,500 | | | | | | | | | | C19483A | 40,000 | 2,000 | Specimen buckled | | | | | | | | | C19183A | 40,000 | 22,700 | | | | | | | | | | C5482A · | 35,000 | 43,800 | | | | | | | | | | C13382A | 32 , 500 | 40,500 | | | | | | | | | | C4882A | 30,000 | 141,000 | | | | | | | | | |] C200S2A] | 25,000 |] 335,700 | Ì | | | | | | | | | C11182A | 20,000 | 761,000 | | | | | | | | | | C4982A | 17,500 | 2,900,000 | | | | | | | | | | C5182A | 16,250 | >13,103,000 | Did not fail | | | | | | | | | | (b) Nominal | mean stress, 10,000 psi | | | | | | | | | | | Ed | lge-cut notch | | | | | | | | | | C143S2B | 50,000 | 12,600 | | | | | | | | | | C11182B | 50,000 | 9,000 | | | | | | | | | | C108S2B | 42,500 | 30,700 | | | | | | | | | | C10032B
C11382B | 38 , 750 | 37,000 | | | | | | | | | | C11382B
C10782B | | 82,000 | | | | | | | | | | C14582B | 35,000
30,000 | 197,000 | | | | | | | | | | C14752B | 30,000
27,500 | 223,000 | | | | | | | | | | C10182B
C13882B | | 344,000 | | | | | | | | | | , - , | 27,500 | • • • • | | | | | | | | | |
C13482B
C11682B | 25,000
23,500 | 740,000 | Did not end? | | | | | | | | | C11002B | 22,500 | >10,037,000 | Did not fail | | | | | | | | | <u></u> | ri | Llet-type notch | | | | | | | | | | C10482A | 50,000 | 19,000 | | | | | | | | | | C14852A | 42,500 | 52,000 | • | | | | | | | | | C14582A | 38, <i>75</i> 0 | 84,500 | | | | | | | | | | C18383A | 37,500 | 92,500 | | | | | | | | | | C13383A | 35,000 | 158,000 | | | | | | | | | | C14982A | 32,500 | 334,000 | | | | | | | | | | C13982A | 30,000 | 570,000 | | | | | | | | | | C10882A | 27,500 | 1,425,000 | | | | | | | | | | C10382A | 25,000 | >10,327,800 | Did not fail | Table 7.- AXIAL-LOAD FATIGUE TEST RESULTS FOR SAE 4130 STEEL SHEET SPECIMENS; NOTCHED, $K_{\rm t}$ = 4.0 - Concluded | | Nominal | | | | | | | | | | | |--------------------|-------------------------------------|------------------------|--------------|--|--|--|--|--|--|--|--| | Specimen | maximum
stress | Life
(cycles) | Remarks | | | | | | | | | | | (psi) | (Cycles) | (1) | | | | | | | | | | | (c) Nominal mean stress, 20,000 psi | Edg | e-cut notch | | | | | | | | | | | C112S2B | 57,500 | 11,400 | | | | | | | | | | | C147S2B | 55,000 | 18,000 | | | | | | | | | | | C135S2B | 51,250 | 27,000 | | | | | | | | | | | C129S2B
C137S2B | 45,000
40,000 | 59,000
106,000 | | | | | | | | | | | C106S2B | 37,500 | 134,000 | l | | | | | | | | | | C118S2B | 35,000 | 202,000 | | | | | | | | | | | C150S2B | 35,000 | 181,500 | · | | | | | | | | | | C105S2B | 35,000 | 164,000 | | | | | | | | | | | C103S2B | 32,500 | >10,287,000 | Did not fail | | | | | | | | | | C132S2B | 32,500 | >10,000,000 | Do. | | | | | | | | | | | Fill | et-type notch | | | | | | | | | | | C114S2A | 57,500 | 23,000 | | | | | | | | | | | C12982A | 51,250 | 53,300 | | | | | | | | | | | C109S2A | 45,000 | 106,000 | [| | | | | | | | | | C120S2A | 40,000 | 149,000 | | | | | | | | | | | C196S2A | 40,000 | 225,000 | [| | | | | | | | | | C127S2A | 37,500 | 433,000 | | | | | | | | | | | C131S2A | 35,000 | >10,041,000 | Did not fail | | | | | | | | | | | (d) Nominal m | ean stress, 30,000 psi | | | | | | | | | | | | Edg | e-cut notch | | | | | | | | | | | C12182B | 65,000 | 10,000 | | | | | | | | | | | C126S2B | 60,000 | 16,500 | | | | | | | | | | | C141S2B | 55,000 | 26,500 |] | | | | | | | | | | C13982B | 52,500 | 43,000 | | | | | | | | | | | C124S2B | 50,000 | 64,000 | | | | | | | | | | | C13182B | 47,500 | 100,000 | | | | | | | | | | | C13682B
C11452B | 45,000
42,500 | 262,000
>10,035,500 | Did not fail | | | | | | | | | | <u> </u> | 12,700 | | 212 100 1011 | | | | | | | | | | | Fille | et-type notch | | | | | | | | | | | C130S2A | 72,500 | 9,000 | | | | | | | | | | | C150S2A | 65,000 | 22,500 | | | | | | | | | | | C135S2A | 60,000 | 34,500 | | | | | | | | | | | C124S2A | 55,000 | 80,000 | | | | | | | | | | | C122S2A | 50,000 | 168,000 | | | | | | | | | | | C121S2A
C123S2A | 47,500
45,000 | 173,000
>12,105,000 | Did not fail | | | | | | | | | | CIE JOZA | 47,000 | 000 و20±و∠د | DIG HOL TATE | | | | | | | | | TABLE 8.- SUMMARY OF NOTCH FATIGUE TEST RESULTS FOR 248-T3 ALUMINUM SHEET SPECIMENS | Nominal
mean | Notch | _ | | Nominal maximum stress (psi) for lifetimes (cycles) of - | | | | | | | |---------------------|--|-----------------------|--|--|--|--|--|---|--|--| | stress
(psi) | type | Kt | 103 | 5 x.10 ³ | 104 | 5 × 10 ⁴ | 105 | 5 x 10 ⁵ | 106 | 107 | | 0 × 10 ³ | None
Hole
Edge
Fillet
Edge
Fillet | 12224 | (40) × 10 ³ (26) (30) | 54 × 10 ³
33
33
(35)
21
24 | 50 × 10 ³
29.5
29.5
32
18
22 | 42 × 10 ³
21
21
24
12.5
13.5 | 34 × 10 ³
16.5
16.5
19
10
12 | 28 × 10 ³
15
15
15
15
8
10 | 24 × 10 ³ 14 14 14 7.5 9.5 | 22 × 10 ³
12
12
12
7
9 | | 10 | None
Hole
Edge
Fillet
Edge
Fillet | 1 W W W 4 4 | (50)
(50)
(50)
(32.5)
(37) | 42
42
43
28.5
32 | 60
37
38
39
25
28 | 47
28
29
32.5
20
22 | 41
25.5
25.5
28
16
20 | 32
21
21.5
22
15.5
17.5 | 30.5
20.5
21
22
15
16.5 | 29
20
21
21
15
16 | | 20 | None
Hole
Edge
Fillet
Edge
Fillet | 1
2
2
4
4 | (55)
(60)
(38)
(43) | 52
52
53
35
38 | 65
47
48
48
32
35 | 53
37
38
38
27
29 | 46
34
34
36
25
27 | 39.5
30
30
31
25
25.5 | 39
29
30
30•5
24
25 | 38
26
30
30
24
25 | | 30 | None
Hole
Edge
Fillet
Edge
Fillet | 122244 | (60)
(48)
(50) | (58)
59
(60)
45
46.5 | 70
55
56
57
41
43 | 59
45
47
47
36
38 | 54
42
43
44
35
36 | 48
39
39·5
39·5
34
35 | 47
38
39
39
34
34•5 | 46
38
39
39
34
34 | lparentheses indicate value obtained by extrapolation. TABLE 9.- SUMMARY OF NOTCH FATIGUE TEST RESULTS FOR 758-T6 ALUMINUM SHEET SPECIMENS | Nominal
mean | Notch | Ψ. | | Nominal | maximum st | ress ¹ (psi) | for lifeti | mes (cycles) | of - | | |---------------------|--|--------|--|--|--|--|--|--|---|--| | stress
(psi) | type | Кt | 103 | 5 × 10 ³ | 10 ¹ | 5 × 10 ⁴ | 10 ⁵ | 5 x 10 ⁵ | 106 | 107 | | 0 × 10 ³ | None
Hole
Edge
Fillet
Edge
Fillet | 122244 | (37) × 10 ³
(40)
(23)
(26) | 33 × 10 ³
35
(37)
20
23.5 | 53 × 10 ³
30
31
3 ⁴
17
22 | 41 × 10 ³
24
24
24
24
13
16.5 | 35 × 10 ³
20
20
20
20
11
14 | 32.5 × 10 ³ 17 17.5 17.5 8.5 11 | 32 × 10 ³
16.5
16.5
16.5
8 | 30 × 10 ³
15.5
15.5
15.5
7.5
9.5 | | 10 | None
Hole
Edge
Fillet
Edge
Fillet | 12244 | (50)
(50)
(52)
(32)
(34) | 42
42
45
27
29 | 62
37
38
42
23
26 | 47
26
29.5
30
18
22 | 40
24
26.5
26.5
16
20 | 39
22
24.5
26.5
15
18 | 36
21
23.5
23.5
14
17 | 35
21
23
23
14
17 | | 20 | None
Hole
Edge
Fillet
Edge
Fillet | 122244 | (60)
(60)
(62)
(37)
(38) | 50
50
55
33
34 | 70
45
46
49
31
32 | 52
32.5
33
33
25
27 | 45
31
32
32
24
26 | 43
29.5
30
30
23
24.5 | 42
29
29•5
30
23
24 | 41
29
29.5
30
23
24 | | 30 | None
Hole
Edge
Fillet
Edge
Fillet | 122244 | (70)
(70)
(70)
(70)
(47)
(48) | 59.5
59.5
65
42
43 | 75
52
53
54
39
40 | 58.5
42
42
42
42
34
36 | 54
39·5
39·5
40
34
35 | 50
37.5
38.5
38.5
33
34 | 49
37
38.5
38.5
33
34 | 49
37
38.5
38.5
33
34 | $^{^{1}}$ Parentheses indicate value obtained by extrapolation. NACA TABLE 10.- SUMMARY OF NOTCH FATIGUE TEST RESULTS FOR SAE 4130 STEEL SHEET SPECIMENS | Nominal
mean | Notch | κ _t | No | minal maximum | stress ^l (psi) | for lifetimes | (cycles) of - | | |---------------------|--|--|---|---------------------------------------|--|--|--|--| | stress
(psi) | type | n-t | 104 | 5 × 10 ⁴ | 10 ⁵ | 5 × 10 ⁵ | 106 | 107 | | 0 × 10 ³ | None
Hole
Edge
Fillet
Edge
Fillet | 1
2
2
2
4
4 | 75 × 10 ³
(53)
(55)
(56)
45
⁴⁷ | 65 × 10 ³ 42 44.5 45 32 35 | 63 × 10 ³
38
40
40
27
31 | 55 × 10 ³
31
33
33
19
23 | 52 x 10 ³
28
30
30
16
20 | 47 × 10 ³
25
27
27
27
14
17 | | 10 | None
Hole
Edge
Fillet
Edge
Fillet | 1
2
2
4
4 | 87
(63)
(64)
(66)
52
57 | 79
54
54
55
38
43 | 73
50
50
51
34
38 | 68
41.5
41.5
42
25
31 | 60
39
39
39.5
23
27.5 | 60
35
37
37
23
26 | | 20 | None
Hole
Edge
Fillet
Edge
Fillet | 1
2
2
4
4 | 95
(74)
(76)
(80)
58
63 | 87
65
65
66
45
51 | - 81
59
60
61
41
46 | 75
50
50
51
34
37•5 | 68
46
47
47
34
36 | 68
44
45
47
33
36 | | 30 | None
Hole
Edge
Fillet
Edge
Fillet | ተ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ | 103
(84)
(85)
(87)
64
72 | 93
71
72
73
52
57 | 88888
\$25
\$3 | 82
57
58
58
44
46 | 76
55
57
57
44
46 | 76
55
57
57
43
46 | $^{^{\}mathrm{l}}$ Parentheses indicate value obtained by extrapolation. TABLE 11.- FATIGUE-STRENGTH REDUCTION FACTORS FOR 24S-T3
ALUMINUM SHEET SPECIMENS AT LOW STRESS LEVELS | Notch
type | Load
ratio | | r, K _f | ength red
, at life
les) of - | | | | | | | | |--|--|---------------------|---------------------------------|-------------------------------------|---------------------------------|--------------------------|--|--|--|--|--| | | | 5 × 10 ⁴ | 105 | 5 × 10 ⁵ | 106 | 107 | | | | | | | 1 | (a) For notches having K _t = 2.0 and for nominal maximum stress <27,000 psi | | | | | | | | | | | | Hole
Edge
Fillet
Hole
Edge
Fillet | -1.00
-1.00
-1.00
50
50 | 2.0
2.0
1.8 | 2.1
2.1
1.8
1.9
1.9 | 1.9
1.9
1.8
1.8 | 1.8
1.8
1.8
1.8
1.8 | 1.8
1.8
1.8
1.8 | | | | | | | | (b) For notches having K _t = 4.0 and for nominal maximum stress <13,500 psi | | | | | | | | | | | | Edge
Fillet
Edge
Fillet | -1.00
-1.00
50
50 | 3.4
·3.1
 | 3.4
2.8
3.3 | 3.5
2.8
3.2
2.4 | 3.2
2.5
3.4
2.4 | 3.1
2.4
3.1
2.4 | | | | | | TABLE 12.- FATIGUE-STRENGTH REDUCTION FACTORS FOR 75S-T6 ALUMINUM SHEET SPECIMENS AT LOW STRESS LEVELS | Notch
type | Load
ratio | | Fatigue-strength reduction factor, K _f , at lifetimes (cycles) of - | | | | | | | | |---|--|-------------------|--|--------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--| | | | 10 ⁴ | 5 × 10 ⁴ | 10 ⁵ | 5 × 10 ⁵ | 106 | 107 | | | | | (a) | (a) For notches having Kt = 2.0 and for nominal maximum stress <38,000 psi | | | | | | | | | | | Hole.
Edge
Fillet
Hole
Edge
Fillet | -1.00
-1.00
-1.00
50
50 | 1.8
1.7
1.6 | 1.7
1.7
1.7
1.8
1.7 | 1.8
1.8
1.9
1.8 | 1.9
1.9
1.9
1.8
1.8 | 1.9
1.9
1.9
1.8
1.8 | 1.9
1.9
1.9
1.8
1.8 | | | | | | (b) For notches having $K_t = 4.0$ and for nominal maximum stress < 19,000 psi | | | | | | | | | | | Edge
Fillet
Edge
Fillet | -1.00
-1.00
50
50 | 3.1 | 3.2
2.5
3.0
2.6 | 3.2
2.5
3.3
2.6 | 3.8
2.9
3.8
2.8 | 4.0
3.1
4.0
3.0 | 4.0
3.2
4.0
3.1 | | | | TABLE 13.- FATIGUE-STRENGTH REDUCTION FACTORS FOR SAE 4130 STEEL SHEET SPECIMENS AT LOW STRESS LEVELS | Notch
type | Load
ratio | Fatigue-strength reduction factor, K _f , at lifetimes (cycles) of - | | | | | | | | | |---|----------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--| | | | 5 × 10 ⁴ | 105 | 5 × 10 ⁵ | 106 | 107 | | | | | | (a) For notches having K _t = 2.0 and for nominal maximum stress <49,250 psi | | | | | | | | | | | | Hole -1.00 Edge -1.00 Fillet -1.00 Hole50 Edge50 Fillet50 | | 1.5
1.5
1.4
 | 1.7
1.6
1.6
1.6
1.6 | 1.8
1.7
1.7
1.8
1.7 | 1.9
1.7
1.7
1.9
1.9 | 1.9
1.7
1.7
1.8
1.8 | | | | | | (b) For notches having K _t = 4.0 and for nominal maximum stress < 24,625 psi | | | | | | | | | | | | Edge
Fillet
Edge
Fillet | -1.00
-1.00
50
50 | | | 2.9
2.4
3.0 | 3.3
2.6
3.2
2.6 | 3.4
2.8
3.5
2.8 | | | | | TABLE 14.- VALUES OF $\ensuremath{\mbox{K}_{N}}$ FOR SEVERAL ASSUMED VALUES OF $\ensuremath{\mbox{\rho}^{\, \mbox{t}}}$ | Type
of
Notch | Kt | Radius,
p
(in.) | Value 1 of Neuber's "technical stress-concentration factor," $K_{ m N}$, for - | | | | | | |---------------------|-------|-----------------------|--|---------------------|--------------------------------|--------------------------------|--|--| | | | | ρ' = 0.02 in. | $\rho^* = 0.01$ in. | $\rho^{i} = 0.005 \text{ in.}$ | $ \rho^t = 0.001 \text{ in.} $ | | | | Hole | 2 2 2 | 1.5000 | 1.90 | 1.95 | 1.95 | 1.95 | | | | Edge | | .3175 | 1.80 | 1.85 | 1.90 | 1.95 | | | | Fillet | | .1736 | 1.75 | 1.80 | 1.85 | 1.95 | | | | Edge | 4 | .0570 | 2.90 | 3.10 | 3.30 | 3.65 | | | | Fillet | 4 | .0195 | 2.50 | 2.75 | 3.00 | 3.45 | | | 1 Computed, to the nearest 0.05, from the relation: $$K_{N} = 1 + \frac{K_{t} - 1}{1 + \sqrt{\rho^{t}/\rho}}$$ Neuber suggests $\rho^{\dagger} = 0.0189$ in. Figure 1.- Notched fatigue test specimens with $K_{\mbox{\scriptsize t}}$ = 2.0. Figure 2.- Notched fatigue test specimens with $K_{\ensuremath{\mbox{t}}}$ = 4.0. | | | | • | |---|------|------|----| 4 | | | | | | | | | | | | | | | | | • | • | | | | | •. | | | | | | | |
 |
 | - | | | | | | | | | | | . Figure 3.- Stress-coat pattern obtained at approximately 15,000 psi. Nominal loading of hole-type notch. $K_{\rm t}$ = 2.0. Approximately 3X. | | | | • | |---|------|------|---| | _ | | | - | _ | | | | | · | | | | | | | | | | | | | | | | | | | • | | | | • | | | | | , | | • | | | | | ٠ | | | | | | | |
 |
 | | (a) At approximately 30,000 psi, nominal. (b) At approximately 40,000 psi, nominal. Figure 4.- Stress-coat patterns obtained on edge-cut notch. K_t = 2.0. Approximately 3X. -• Figure 5.- Results of axial-load fatigue tests on notched 24S-T3 aluminum sheet specimens. $K_{\mbox{\scriptsize t}}$ = 2.0. Figure 6.- Results of axial-load fatigue tests on notched 24S-T3 aluminum sheet specimens. $K_{\rm t}$ = 4.0. Figure 7.- Results of axial-load fatigue tests on notched 75S-T6 aluminum sheet specimens. $K_{\mbox{\scriptsize t}}$ = 2.0. Figure 8.- Results of axial-load fatigue tests on notched 75S-T6 aluminum sheet specimens. $K_{\mbox{\scriptsize t}}=4.0$. Figure 9.- Results of axial-load fatigue tests on notched SAE 4130 steel sheet specimens. $K_{\mbox{\scriptsize t}}$ = 2.0. Figure 10.- Results of axial-load fatigue tests on notched SAE 4130 steel sheet specimens. $K_{\mbox{\scriptsize t}}$ = 4.0. Figure 11.- Constant-lifetime curves for 24S-T3 aluminum sheet notched with a central hole. $K_{\mbox{\scriptsize t}}$ = 2.0. NACA IN 2389 Figure 12.- Constant-lifetime curves for 24S-T3 aluminum sheet notched with symmetrical edge cuts. $K_{\mbox{\scriptsize t}}$ = 2.0. Figure 13.- Constant-lifetime curves for 24S-T3 aluminum sheet notched with symmetrical fillets. $K_{\rm t}$ = 2.0. 52 NACA IN 2389 Figure 14.- Constant-lifetime curves for 24S-T3 aluminum sheet notched with symmetrical edge cuts. $K_{\mbox{\scriptsize t}}$ = 4.0. Figure 15.- Constant-lifetime curves for 24S-T3 aluminum sheet notched with symmetrical fillets. $K_{\mbox{\scriptsize t}}=4.0$. Figure 16.- Constant-lifetime curves for 75S-T6 aluminum sheet notched with a central hole. $K_{\mbox{\scriptsize t}}$ = 2.0. Figure 17.- Constant-lifetime curves for 75S-T6 aluminum notched with symmetrical edge cuts. $K_{\rm t}$ = 2.0. Figure 18.- Constant-lifetime curves for 758-T6 aluminum sheet notched with symmetrical fillets. $K_{\mbox{\scriptsize t}}$ = 2.0. ---- Figure 19.- Constant-lifetime curves for 75S-T6 aluminum sheet notched with symmetrical edge cuts. $K_{\mbox{\scriptsize t}}=4.0$. Figure 20.- Constant-lifetime curves for 75S-T6 aluminum sheet notched with symmetrical fillets. $\rm K_{t}$ = 4.0. Figure 21.- Constant-lifetime curves for SAE 4130 steel sheet notched with a central hole. $K_{\mbox{\scriptsize t}}$ = 2.0. Figure 22.- Constant-lifetime curves for SAE 4130 steel sheet notched with symmetrical edge cuts. $K_t = 2.0$. Figure 23.- Constant-lifetime curves for SAE 4130 steel sheet notched with symmetrical fillets. $K_{\mbox{\scriptsize t}}=2.0$. 'n Figure 24.- Constant-lifetime curves for SAE 4130 steel sheet notched with symmetrical edge cuts. $K_{\rm t}$ = 4.0. Figure 25.- Constant-lifetime curves for SAE 4130 steel sheet notched with symmetrical fillets. $K_{\rm t}$ = 4.0. Figure 26.- Schematic representation of stress distribution in a notched specimen at various levels of applied stress. K_t , theoretical stress-concentration factor; M, peak stress; M_n , maximum nominal stress; a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , stresses over cross section. NACA-Langley - 2-1-55 - 125